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We derive exact Langevin-type equations governing quasispecies dynamics. The inherent multiplicative
noise has both real and imaginary parts. The numerical simulation of the underlying complex stochastic partial
differential equations is carried out employing the Cholesky decomposition for the noise covariance matrix.
This noise produces unavoidable spatiotemporal density fluctuations about the mean-field value. In two dimen-
sions, the fluctuations are suppressed only when the diffusion time scale is much smaller than the amplification
time scale for the master species.

DOI: 10.1103/PhysRevE.73.066109 PACS number�s�: 82.40.Ck, 05.10.Gg, 05.40.Ca

I. INTRODUCTION

Deterministic descriptions of reacting and diffusing
chemical and molecular species fail to account for the sys-
tem’s internal fluctuations. Nevertheless, it is known that if
the spatial dimensionality d of the system is smaller than a
certain upper critical dimension dc, these intrinsic fluctua-
tions can play a crucial role in the asymptotic late time be-
havior of decay rates �anomalous kinetics� and the results
obtained from the mean-field equations are not correct �1�.
Even far from the asymptotic regimes, these fluctuations can
also control the dynamics on local spatial and temporal
scales �2�. The mean-field result is only valid in the idealized
infinite diffusion limit, because the reactions themselves in-
duce local microscopic density fluctuations that must be
taken into account in the underlying nonlinear dynamics.

The proper inclusion of the effects of microscopic density
fluctuations in reaction-diffusion systems can be carried out
once the microscopic kinetic equations are specified. With
the reaction scheme in hand, one can derive the correspond-
ing continuous-time master equation, then represent this sto-
chastic process by second-quantized Bosonic operators and
in the final step, pass to a path integral to map the system
onto a continuum stochastic field theory �3,4�. This technique
has opened up the way for employing powerful field-
theoretic renormalization group �RG� methods for studying
fluctuations in a number of simple reaction-diffusion prob-
lems �5�. Moreover, effective Langevin-type equations can
be deduced from these field-theoretic actions, in which the
noise is made manifest and is specified precisely. Langevin-
type equations are ideally suited for investigating problems
in stability and pattern formation, and lend themselves for
the direct numerical solution of the dynamics. However,
most of the studies devoted to fluctuations in reaction-
diffusion systems are based on applying RG methods to the
field-theoretic actions, with little attention being payed to the

analytical or numerical study of the associated effective
Langevin equations. This is most likely due to the fact that
the noise in this latter representation is often imaginary or
even complex, a feature, which at first glance, may be some-
what surprising �6�, and has presented a challenging problem
for numerical simulation.

The purpose of this paper is to confront this imaginary/
complex noise issue at face value. We propose and test out
an algorithm for numerically integrating complex noise in
multi-component reaction-diffusion equations �7�. The model
we treat can be considered as a single quasispecies with error
tail, which is analytically and computationally amenable.
The current great revival of interest in quasispecies dynamics
owes to the fact that viral population dynamics is known to
be described by quasispecies �8�. The major part of this work
has been devoted to the analysis of their dynamics under
spatially homogeneous conditions �8–12�. More recently, the
importance of diffusive forces has been recognized and taken
into account �13,14�, but rather less attention has been paid
to the presence of the unavoidable internal density fluctua-
tions �15� that are necessarily present in all realistic incom-
pletely mixed diffusing systems of reacting agents �16�. In
view of the above considerations, it is important to under-
stand how internal fluctuations affect the evolution of repli-
cator dynamics, and in what ways do the deterministic and
stochastic effects compete. The specific model treated here
maps exactly to a set of Langevin equations. The advantage
for the numerical simulation is that the model has few fields,
the corresponding noise terms are known exactly, and no
approximation is required.

In Sec. II we introduce the specific reaction scheme. Fol-
lowing a well-established procedure �5�, we derive a field-
theoretic description of these reactions by means of the Doi-
Peliti formalism �3,4�. We obtain the continuum action, and
from this derive an equivalent and exact Langevin equation
description of this quasispecies model. The advantage of this
is that the noise properties are specified automatically and
indicate how the naive mean field reaction-diffusion equa-
tions must be modified to take into account properly the
�unavoidable� internal density fluctuations. The ensuing
noise is complex and multiplicative, and in magnitude is con-
trolled by the competition between the replicator amplifica-
tion and diffusion. Their numerical solution is rendered pos-
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sible by employing the Cholesky decomposition for the
associated noise covariance matrix, as we describe in detail
below in Sec. III. In Sec. IV we present results of the nu-
merical simulations of the complex Langevin equations de-
rived in Sec. III. Conclusions are drawn in Sec. V.

II. FROM THE REACTION SCHEME
TO THE STOCHASTIC PDES

A. Model

We consider a simple replicator model with error intro-
duced via the faulty self-replication into a mutant species.
The mutant species, or error tail, undergoes noncatalyzed
self-reproduction, but has no effect on the main species. The
system is closed; only energy can be exchanged with the
surroundings, where activated monomers react to build up
self-replicative units. These energy rich monomers are regen-
erated from the by-product of the reactions by means of a
recycle mechanism �driven by an external source of photons
and sunlight� maintaining the system out of equilibrium. The
closure of the system directly imposes a selection pressure
on the population. In what follows, M*, I, Ie denote the con-
centrations of the activated energy rich monomers, the repli-
cators, and the mutant copies, respectively. The kinetic con-
stants are introduced in the reaction steps as follows:

Accurate noncatalytic replication with rate A:

M* + I→
AQ

2I . �1�

Error noncatalytic replication:

M* + I →
A�1−Q�

I + Ie. �2�

Error-species replication with rate Ae:

M* + Ie→
Ae

2Ie. �3�

Species degradation and subsequent monomer reactivation
with rates r ,re:

I→
r

M*, �4�

Ie→
re

M*. �5�

The quality factor Q� �0,1�. In order to keep the follow-
ing development mathematically manageable, we will as-
sume that the monomer reactivation step proceeds suffi-
ciently rapidly so that we can in effect, regard the decay of I

and Ie plus the subsequent reactivation M →
energy

M* as occur-
ring in one single step as indicated in Eqs. �4� and �5�. If we
suppose the system is being bathed continuously by an ex-
ternal energy source, the monomer reactivation is occurring
continuously, and this should be a reasonable approximation.
To complete the specification of the model, we will include
spatial diffusion. We allow the M*, I, and Ie particles to dif-
fuse with constants Ds, DI, and De, respectively. Diffusion is
incorporated at the outset in the master equation. The con-

straint of constant total particle number is automatically sat-
isfied by the continuous chemical fields in the mean-field
limit, as we demonstrate below. Most importantly, this con-
straint provides a selection pressure on the quasispecies. In
the following, we keep the dependence on the model param-
eters general, though later on we will choose Ds�DI=De
and r=re.

B. Mapping to Bosonic field theory

This chemical master equation for the model Eqs. �1�–�5�
can be mapped to a second-quantized description following a
procedure developed by Doi �3�. Briefly, we introduce anni-
hilation and creation operators a and a† for M*, b and b† for
I, and c and c† for Ie at each lattice site, with the commuta-
tion relations �ai ,aj

†�=�ij, �bi ,bj
†�=�ij and �ci ,cj

†�=�ij. The
vacuum state �corresponding to the configuration containing
zero particles� satisfies ai �0�=bi �0�=ci �0�=0. We then de-
fine the time-dependent state vector,

���t�� = �
�k	,�m	,�n	

P��k	,�m	,�n	,t�

i

�ai
†�ki�bi

†�mi�ci
†�ni�0� ,

�6�

where P��k	 , �m	 , �n	 , t� is the probability distribution to find
k, m, n particles of type M*, I, Ie, respectively, at each site.
The master equation can then be written as a Schrödinger-
like equation,

−
� ���t��

�t
= H���t�� , �7�

where the lattice Hamiltonian or time-evolution operator is a
function of a, a†, b, b†, c, c† and is given by

H =
Ds

l2 �
�i,j�

�ai
† − aj

†��ai − aj� +
DI

l2 �
�i,j�

�bi
† − bj

†��bi − bj�

+
De

l2 �
�i,j�

�ci
† − cj

†��ci − cj� − AQ�
i

�aibi
†bi

†bi − ai
†aibi

†bi�

− A�1 − Q��
i

�aibi
†bici

† − ai
†aibi

†bi� − Ae�
i

�aici
†ci

†ci

− ai
†aici

†ci� − r�
i

�ai
†bi − bi

†bi� − re�
i

�ai
†ci − ci

†ci� . �8�

Now take the continuum limit �l→0�, and obtain a represen-
tation as a path integral �4� over continuous fields a�x , t�,
a*�x , t�, b�x , t�, b*�x , t�, c�x , t�, and c*�x , t� with a weight
exp�−S�a ,a* ,b ,b* ,c ,c*��, whose action S is given by

S =� dtddx�a*�ta + Ds � a* � a + b*�tb + DI � b* � b + c*�tc

+ De � c* � c − AQ�ab*2b − a*ab*b� − A�1 − Q��ab*bc*

− a*ab*b� − Ae�ac*2c − a*ac*c� − r�a*b − b*b�

− re�a*c − c*c�� . �9�

The stationarity conditions �the “classical field equations”�
�S /�a=�S /�b=�S /�c=0 and �S /�a*=�S /�b*=�S /�c*=0
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yield, respectively, a*=b*=c*=1 and the usual mean-field
rate equations,

�ta = Ds�
2a − Aab − Aeac + rb + rec , �10�

�tb = DI�
2b + AQab − rb , �11�

�tc = De�
2c + A�1 − Q�ab + Aeac − rec . �12�

We emphasize that these equations represent the mean-field
approximation wherein all fluctuations are simply ignored.
The exact and correct dynamical equations are fully stochas-
tic, and we derive them below. Note in the mean-field limit,
the total particle number N is automatically conserved: add-
ing up Eqs. �10�–�12� allows us to prove that for a closed
reaction system �in a bounded and closed reaction domain�

dN

dt
=

d

dt
� ddx�a�x,t� + b�x,t� + c�x,t�� = 0, �13�

so that N is a constant.

C. Equivalent Langevin equation description

Here, we go beyond the mean-field approximation, Eqs.
�10�–�12�, and obtain the exact stochastic partial differential
equations that govern the quasispecies dynamics. To do so,

shift conjugate fields as follows: a*=1+ ã, b*=1+ b̃, and c*

=1+ c̃, then we can write the action as follows:

S =� dtddx�ã��ta − Ds�
2a + Aab + Aeac − rb − rec�

+ b̃��tb − DI�
2b − AQab + rb� + c̃��tc − De�

2c

− A�1 − Q�ab − Aeac + rec� − AQab�b̃2 − ãb̃�

− A�1 − Q�ab�b̃c̃ − ãb̃� − Aeac�c̃2 − ãc̃�	 . �14�

The next step is to introduce Gaussian-distributed noise
fields �a�x , t�, �b�x , t�, �c�x , t� which will permit us to inte-
grate over the conjugate fields and obtain the exact and
equivalent Langevin representation of the stochastic dynam-
ics contained in S. Now the part in −S quadratic in the con-

jugate fields ã, b̃, c̃ contributes to the exponential weight the
following expression �we suppress writing out the x, t depen-
dence and the integrals �ddxdt; these are understood to be
included in what follows�:

exp�− S��quadratic = exp�+ AQabb̃2 − Aabãb̃ + A�1 − Q�abb̃c̃

+ Aeac�c̃2 − ãc̃�� = exp�+ S · V · S�

= exp�
ij

SiVijSj , �15�

where the vector S= �ã , b̃ , c̃� and the 3�3 array V is given
by


0 −

1

2
Aab −

1

2
Aeac

−
1

2
Aab + AQab +

1

2
A�1 − Q�ab

−
1

2
Aeac +

1

2
A�1 − Q�ab + Aeac

� .

�16�

Now make use of the Hubbard-Stratanovich transformation

� 

i

d�iexp�−
1

4�
ij

�i�Vij
−1�� j + �

i

�iSi�
= const � exp�

ij

SiVijSj �17�

to express the right-hand side of Eq. �15� as an integral
over noise fields ��i�. The covariance matrix V is actually a
3�3 matrix in field space and is proportional to space and
time delta functions �infinite dimensional continuous “matri-
ces,” etc.� We immediately read off the direct and crossed
noise correlations directly from Vij, since

V = ��a�a� ��a�b� ��a�c�
��b�a� ��b�b� ��b�c�
��c�a� ��c�b� ��c�c�

� . �18�

For the final step we use Eq. �17� to replace the right-hand
side of Eq. �15� in Eq. �14�. We can now integrate exactly

over the conjugate fields ã , b̃ , c̃, appearing in the path inte-

gral �DaDãDbDb̃DcDc̃e−S�a,ã,b,b̃,c,c̃� which yields a product
of delta-functional constraints which imply the following set
of exact coupled set of Langevin equations:

�ta = Ds�
2a − Aab − Aeac + rb + rec + �a, �19�

�tb = DI�
2b + AQab − rb + �b, �20�

�tc = De�
2c + A�1 − Q�ab + Aeac − rec + �c, �21�

with noise correlations �compare Eq. �16� with Eq. �18��

��a�x,t�� = ��b�x,t�� = ��c�x,t�� = 0, �22�

��a�x,t��a�x�,t��� = 0, �23�

��b�x,t��b�x�,t��� = + AQa�x,t�b�x,t��d�x − x����t − t�� ,

�24�

��c�x,t��c�x�,t��� = + Aea�x,t�c�x,t��d�x − x����t − t�� ,

�25�

��a�x,t��b�x�,t��� = −
1

2
Aa�x,t�b�x,t��d�x − x����t − t�� ,

�26�
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��a�x,t��c�x�,t��� = −
1

2
Aea�x,t�c�x,t��d�x − x����t − t�� ,

�27�

��b�x,t��c�x�,t��� = +
1

2
A�1 − Q�a�x,t�b�x,t��d�x − x��

���t − t�� . �28�

Note the noise �a has finite cross correlations, Eqs. �26� and
�27�, but zero autocorrelation, Eq. �23�. This is already a
indicator that the noise cannot be purely real. In the follow-
ing Section, we will show that the pattern of the above cor-
relations is solved by complex noise.

III. LANGEVIN EQUATIONS WITH COMPLEX NOISE

It is reasonable to assume that both the replicating and
mutant species diffuse with equal rates DIe=DI=D and have
equal degradation rates, i.e., re /r=1. We thus consider the
following reaction-diffusion system, in a two-dimensional
space, subject to noise and employing the dimensionless
fields, noises and model parameters �for the details of the
nondimensionalization of the stochastic reaction-diffusion
system, see the Appendix�:

� ā

��
= �Ds/D��̂2ā − āb̄ − āc̄ + b̄ +

1

�
c̄ + �̂a,

� b̄

��
= �̂2b̄ + Qāb̄ − b̄ + �̂b,

� c̄

��
= �̂2c̄ + ��1 − Q�āb̄ + �āc̄ − c̄ + �̂c, �29�

where �̂2= �2

�x̂2 + �2

�ŷ2 and �� = ��̂b , �̂c , �̂a� is the noise vector de-

fined above. The initial condition ā0 , b̄0 , c̄0 and the ratio of
replication rates �=

Ae

A �1 obeys the dimensionless constraint

for the closed system N̄=��dx̂dŷ�ā0+ b̄0+
c̄0

�
�. In the

two-dimensional case the total number of particles is given
by the ratio N= N̄ /� where �=A /DI is the ratio of the reac-
tion to the diffusion processes �in any dimension d, we have
�= �r /DI�d/2A /r�.

In the deterministic case and per each single cell
�x̂��ŷ, this reaction-diffusion system, Eq. �29�, has the fol-
lowing set of homogeneous and static solutions:

�i� b̄= c̄=0, ā= N̄, absorbing solution,

�ii� b̄=0, c̄ /�= N̄− 1
� , ā= 1

� , if ��1/ N̄,

�iii� c̄ /�=
�N̄Q−1��1−Q�

Q�1−�� , b̄=
�N̄Q−1��Q−��

Q�1−�� , ā=1/Q if Q��

and Q�1/ N̄.
For convenience we can reorder the noise vector components
�� = ��̂b , �̂c , �̂a� such that it has the correlation matrix:

B = ��� �� �T�

= �Qāb̄
1

2
���1 − Q�āb̄ −

1

2
�āb̄

1

2
���1 − Q�āb̄ ��2āc̄ −

1

2
��āc̄

−
1

2
�āb̄ −

1

2
��āc̄ 0

� ,

�30�

where the zero autocorrelation term is located in the last
column and last row. Notice that B is a symmetric matrix

with detB=− Q
4 ā3b̄c̄�3�2�b̄+ c̄�, i.e., it is negative definite.

For an M �M symmetric matrix B, one can apply
the Cholesky decomposition B=LLT to extract the square
root of the matrix in the form of a lower triangular matrix
L with Lii=�Bii−�k=1

i−1 Lik
2 and Lji=

1
Lii

�Bji−�k=1
i−1 LikLjk� and

j= i+1, . . . ,M. This decomposition is used when the sym-
metric matrix is positive definite. We have applied this algo-
rithm to our case with negative definite correlation matrix
and we obtain then the matrix “square root” L where some of
the terms are manifestly imaginary:

L = ��ā
�Qb¯ 0 0

�

2
�1 − Q��b̄/Q

��4Qc̄ − �1 − Q�2b̄

2�Q
0

−
1

2
�b̄/Q

1

2�Q

�1 − Q�b̄ − 2Qc̄

�4Qc̄ − �1 − Q�2b̄
�− 1�Q

�b̄c̄ + c̄2

�4Qc̄ − �1 − Q�2b̄

� . �31�

We will use this decomposition to relate the noise to a new

real noise 	�, a white Gaussian noise with �	�	��T�=1 �i.e., with

uncorrelated real components� such that �� =L	� �and thus

�� T=	�TLT�. We thus are able to write the internal noise as a
linear combination of white noise terms. Notice that by do-

ing so the condition ��� �� �T�= �L	�	��TLT�=L�	�	��T�LT=LLT=B
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is satisfied. This transformation will allow us to separate the
real and imaginary parts of the noise, a useful feature to have
for setting up a numerical simulation of the system in Eq.
�29�.

Given three uncorrelated �real� white Gaussian noises 	1,

	2, and 	3 �the three components of 	�� we recover �̂b, �̂c and
�̂a with the specified cross correlations, Eqs. �A11�–�A16� by
writing

�b
ˆ = ��ā�Qb¯ 	1,

�c
ˆ = ��ā��

2
�1 − Q��b̄/Q	1 +

��4Qc̄ − �1 − Q�2b̄

2�Q
	2� ,

�a
ˆ = ��ā�−

�b

2�Q
	1 +

1

2�Q

�1 − Q�b̄ − 2Qc̄

�4Qc̄ − �1 − Q�2b̄
	2

+ �− 1�Q
�b̄c̄ + c̄2

�4Qc̄ − �1 − Q�2b̄
	3� . �32�

The noise �a
ˆ for the nutrient field always has an imaginary

component and, since this noise is feeding the nutrient field
reaction-diffusion equation, the nutrient field also has an
imaginary component. Finally since all the equations are
coupled to the nutrient ā, even if the initial condition for

ā , b̄ , c̄ is real, the fields will, in principle, have both real and
imaginary part and thus we have to solve a system of six
partial differential equations, one for each field

�Re�ā� , Im�ā� ,Re�b̄� , Im�b̄� ,Re�c̄� , Im�c̄�� with two-
dimensional diffusion and noise. At this juncture, it is impor-
tant that we confirm numerically that the complex solutions,
once averaged over the fluctuations, do indeed yield real re-
sults, in accord with the theoretical expectations �17�.

IV. NUMERICAL RESULTS

By inspection of the correlation matrix �30� we see that
the internal, unavoidable, reaction noise is multiplicative and
its intensity is proportional to �. The parameter � is the ratio
of the reaction to the diffusion processes �in d=2, �=A /DI,
and ��=Ae /De�. The multiplicative noise is proportional

both to ā, and either b̄ or a combination of b̄ with c̄. If the
system stays close to the mean-field result, then ā=1/Q and

b̄ and c̄ scale as �N̄Q−1�. Finally, the multiplicative noise

will increase with both increasing � and/or increasing N̄.
Only when the diffusion processes dominate and �→0, does
the noise terms vanish, the local details of reaction are
erased, and we expect to recover the homogeneous solution
of the mean-field approximation. Our main interest here is
the limit when the diffusion does not dominate, ��0 and the
noisy multiplicative term has a significant contribution. In
this regime the problem can thus not be analyzed by pertur-
bation theory and has to be treated numerically.

The numerical simulations of system evolution have been
performed using forward Euler integration of the finite-

difference equations following discretization of space and
time in the stochastic partial differential equations. The spa-
tial mesh consists of a lattice of 154�154 cells with cell size

x̂=
ŷ=0.35 and periodic boundary conditions. Noise has
been discretized as well. The system has been numerically
integrated up to �=100 �with time step 
�=2.5�10−4�. In-
tegrating the system numerically we confirmed that the
imaginary fields were zero in average as expected, since the
stochastic averages �a�, �b�, and �c� correspond to the physi-
cal densities and thus the scaled number of particles was

preserved and remained real: Re�N̄�= N̄, and Im�N̄�=0
�within computational errors� �20�.

This method is able to provide the time evolution of the
spatial distribution of each of the fields. As an example we
consider the evolution of the spatially uniform initial condi-

tion, ā=1/Q, b̄=
�N̄Q−1��Q−��

Q�1−�� , c̄ /�=
�N̄Q−1��1−Q�

Q�1−�� �which is the

solution of mean-field problem� for Ds /D=10, Q=0.92,

�=0.8, and N̄=100 and noise intensity �=1. In Fig. 1 we
show the time evolution of the real part of the distributions

of the master �b̄� and mutant �c̄� species, which exhibit spa-

FIG. 1. Temporal sequence of spatial fluctuations in the real part

of the stochastic fields b̄�x̂ , ŷ ,�� �upper row� and c̄�x̂ , ŷ ,�� �lower
row�. The spatial distributions are shown in �a� at �=0.5, in �b� at
�=50, and in �c� at �=75.
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tial fluctuations with respect to the mean-field value �up to
+1% in black and −1% in white�. The spatial distributions of
the master and mutant species are anticorrelated. After a
transient time, the short-range spatial fluctuations �e.g., at
�=0.5� evolve into long-range spatial fluctuations �e.g., at
�=75� with wider regions of higher densities of either one or
the other species. The system converges always to the
same spatially averaged solution independently of the
initial condition and noise intensity. For example, in Fig. 2

�left� we show for Ds /D=10, Q=0.92, �=0.8, and N̄=100,
the time evolution of the spatially averaged solution
��ā����=��dx̂dŷā�x̂ , ŷ ,��, etc.� for two noise intensities,
�=0.1 and �=10−2, when the initial condition is set

to ā�x̂ , ŷ ,0�= b̄�x̂ , ŷ ,0�= c̄�x̂ , ŷ ,0� /�= N̄ /3. We can see
that independently of the noise intensity this averaged value
converges to the solution of the mean-field problem

ā=1/Q, b̄=
�N̄Q−1��Q−��

Q�1−�� , c̄ /�=
�N̄Q−1��1−Q�

Q�1−�� . Higher order mo-

ments, such as the mean square value, can be also extracted
from the distribution. For the same study case we the
show the time evolution of the mean square value

��b̄���=���b̄���− �b̄�����2�� for three noise intensities, �=1,
�=0.1, and �=0.01, Fig. 2 �right�, confirming that only in the
limit �→0 do spatiotemporal fluctuations vanish and we re-

cover the homogeneous stationary solution of the mean-field
approximation.

V. DISCUSSION

Starting from the microscopic kinetic equations for a
single master species competing with mutants for a limited
pool of nutrients, we have derived a set of stochastic partial
differential equations that exactly describe the complete dy-
namics of this closed reacting and diffusing system. The un-
avoidable fluctuations inherent to the system give rise to
multiplicative noise having both real and imaginary compo-
nents. A procedure is presented to solve numerically this set
of partial differential equations. The internal noise associated
with the microscopic details of the reaction produces un-
avoidable spatiotemporal density fluctuations around the
mean-field value. We estimate the size of these fluctuations.
They strictly vanish, and the mean-field limit is recovered,
only when the diffusion processes are much faster than the
rate of master species amplification. We find that the aver-

ages �ā�, �b̄�, and �c̄� tend to stationary values �see Fig. 2
�left�� as do also the second moments, or variances, �ā���,
�b̄���, and �c̄���, see Fig. 2 �right�.

The general purpose algorithm presented here expresses a
set of complex Gaussian noises with defined covariance ma-
trix as a linear combination of real, white Gaussian noises.
This allows for the numerical generation of this noise, and
thus the numerical integration of Langevin-type equations
with complex noise. We have performed numerical simula-
tions with these dynamical equations to assess directly the
influence of this noise on the evolution of the stochastic
fields associated with a quasispecies, its error tail and the
activated monomer distributions. Apart from the specific ap-
plication to the problem analyzed in this paper, we believe
this matrix decomposition will be of great practical use for
simulating other stochastic PDEs with complex noise, a sub-
ject which has received little attention up to now �7�. In this
regard it is interesting to emphasize that the appearance and
necessity of complex and/or imaginary noise in probabilistic
descriptions of both quantum optics and nonlinear chemical
reaction systems has been recognized for some time now and
began to be placed on a firm theoretical footing well over
twenty years ago �18�.

The simulations are carried out in d=2 space dimensions.
For this dimension, the basic amplitude of the noise is con-
trolled by the dimensionless parameter �=A /DI, where A
denotes the amplification rate of the quasispecies and DI its
diffusion. Thus the noise is controlled, in part, by the com-
petition between production and diffusion. Diffusion tends to
erase or smooth out local concentration gradients while par-
ticle production, which occurs locally, tends to increase them
�i.e., increases the local density of the species being ampli-
fied�. In d=2 and using Eq. �A1�, we can also write
�= tD / tA, where tD , tA denote the diffusion and species ampli-
fication time scales, respectively. This shows that the noise
arises through the competition between these two time
scales. Furthermore, since the noise is multiplicative, its am-
plitude also depends on the bilinear product of concentration

FIG. 2. �Top� Time evolution of spatially averaged values �upper

curve for �b̄�, middle for �c̄� /�, and lower for �ā�� for N̄=100,
�=0.1, and �=0.01 �the difference in these two noise levels is not
distinguishable in the figure� when the initial condition was set to

ā�x̂ , ŷ ,0�= b̄�x̂ , ŷ ,0�= c̄�x̂ , ŷ ,0� /�= N̄ /3. The spatially averaged so-
lution always converges to the mean-field solution which is marked
by the horizontal lines. �Bottom� Time evolution of the mean square
value �b̄��� for �=1, �=0.1, and �=0.01 showing that the spatial
fluctuations scale with the noise intensity, vanishing only in the
limit �→0.
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fields �see, e.g., Eqs. �A10�–�A16�� so that whenever mono-
mer and replicator or monomer and error tail meet at a point
and react, this gives rise to noise at that point, whose strength
is directly proportional to the product of particle concentra-
tions at that point �equal to the product of particle numbers
per unit area�. Thus the complete noise amplitude is modu-
lated by � and the local bilinear concentrations. So, while
diffusion smooths out inhomogeneities and tends to diminish
the internal noise, increasing the total fixed particle number
N �in a bounded domain� leads to stronger local fluctuations.
This is easy to understand since, in spite of the diffusion,
increasing N leads to a “pile-up” of reactants at spatial
points. There will always be fluctuations about this approxi-
mate homogeneous state, and the statistical deviation from
homogeneity grows with increasing total particle number.

In realistic situations with finite diffusion rates, the system
does not converge to a homogeneous solution with a unique
defined value, but to a state where the densities fluctuate both
in space and time around a mean value. This approach is
useful to estimate the expected deviations of the densities
with respect to the mean-field value when the microscopic
reaction details are taken into account. For systems with
higher degree of nonlinearity these deviations may eventu-
ally lead the system to new asymptotic states and also induce
the formation of true patterns. We point out that no true
spatial patterns are generated by the underlying reaction dif-
fusion model studied in this paper. The model as it stands is
weakly nonlinear, depending only quadratically on the fields
and these second-order reaction terms are not capable of giv-
ing rise to spatial patterns. The proper inclusion of noise
induces random structures. However, once catalyzed self-
replication is included, thereby leading to a bona fide net-
work of quasispecies, the underlying dynamics becomes cu-
bically nonlinear, and cubic terms can lead to a variety of
possible spatial patterns �13� whose evolution and stability
properties in presence of internal noise can be profitably
studied with the methods offered in this paper �15�. Finally,
we mention that the methods in Refs. �3,4� were used re-
cently to study the critical behavior of a simple model of
quasispecies in the vicinity of the error threshold �19�.
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APPENDIX: NONDIMENSIONALIZATION

For the purposes of numerical simulation, it is convenient
to cast the system of stochastic partial differential equations
�19�–�21� and noise statistics Eqs. �22�–�28� in terms of di-
mensionless fields and parameters. To this end, define basic
length and time scales L and T, respectively. Then dimen-
sional analysis of any of the three stochastic equations in
Eqs. �19�–�21� yields

�a� = �b� = �c� = L−d, �DI� = �De� = �Ds� = L2/T �Q�

= 1, �A� = �Ae� = Ld/T , �A1�

�r� = �re� = T−1, ��a� = ��b� = ��c� = T−1L−d. �A2�

Define the dimensionless fields:

ā =
A

r
a, b̄ =

A

r
b, c̄ =

Ae

r
c , �A3�

and the dimensionless time and spatial coordinates and their
corresponding derivative operators:

� = rt, x̂j = � r

DI
�1/2

xj , �A4�

Þ
�

��
=

1

r

�

�t
, �̂2 = �DI

r
��2. �A5�

We obtain the following dimensionless version of the sto-
chastic equations listed in Eqs. �19�–�21�:

��ā = �Ds

DI
��̂2ā − āb̄ − āc̄ + b̄ + � reA

rAe
�c̄ + �̂a, �A6�

��b̄ = �̂2b̄ + Qāb̄ − b̄ + �̂b, �A7�

��c̄ = �De

DI
��̂2c̄ +

Ae

A
�1 − Q�āb̄ +

Ae

A
āc̄ −

re

r
c̄ + �̂c,

�A8�

where the dimensionless noises are defined by

�̂a =
A

r2�a, �̂b =
A

r2�b, �̂c =
Ae

r2 �c, �A9�

and the dimensionless noise correlations are

��̂a�x̂,��� = ��̂b�x̂,��� = ��̂c�x̂,��� = 0, �A10�

��̂a�x̂,���̂a�x̂�,���� = 0, �A11�

��̂b�x̂,���̂b�x̂�,���� = + �Qā�x̂,��b̄�x̂,���d�x̂ − x̂����� − ��� ,

�A12�

��̂c�x̂,���̂c�x̂�,���� = + ��2ā�x̂,��c̄�x̂,���d�x̂ − x̂����� − ��� ,

�A13�

��̂a�x̂,���̂b�x̂�,���� = −
1

2
�ā�x̂,��b̄�x̂,���d�x̂ − x̂����� − ��� ,

�A14�

��̂a�x̂,���̂c�x̂�,���� = −
1

2
��ā�x̂,��c̄�x̂,���d�x̂ − x̂����� − ��� ,

�A15�
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��̂b�x̂,���̂c�x̂�,���� = +
1

2
���1 − Q�ā�x̂,��b̄�x̂,���d�x̂ − x̂��

���� − ��� . �A16�

In arriving at this, note that

��d�x�� = L−d, ���t�� = T−1, �A17�

whereas the following deltas are dimensionless:

��d�x̂�� = 1, ������ = 1, �A18�

and

�d�x���t� = r� r

DI
�d/2

�d�x̂����� . �A19�

The basic control parameters are given by

� =
A

r
� r

DI
�d/2

, � = �Ae

A
� � 1, 1 � Q � 0. �A20�

Note that in d=2 space dimensions the noise amplitude � is
determined uniquely by the ratio of the replication rate A to
replicator diffusion DI. It is reasonable to assume that both
master sequence and error tail replicator molecules decay
with the same rate, r=re. Moreover, since both the master
sequence and error tail are built up from the same monomer
pool and have the same total length, they should also have
identical diffusion constants DI=De. The much smaller
monomers should diffuse more rapidly, so we can take
Ds�DI=De�D. Lastly, we note that the noise-averaged
fields satisfy the constraint:

� d2x̂�ā + b̄ +
1

�
c̄� = N̄ = �N , �A21�

where N is the total particle number.
The complete nondimensional model has five parameters:

�, �, Q, Ds /D�1, and N̄.
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